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Abstract PETSc is a scalable solver library for the solution of algebraic equations
arising from the discretization of partial differential equations and related problems.
PETSc is organized as a class library with classes for vectors, sparse and dense ma-
trices, Krylov methods, preconditioners, nonlinear solvers, and differential equation
integrators. A new subclass of the vector class has been introduced that performs
its operations on NVIDIA GPU processors. In addition, a new sparse matrix sub-
class that performs matrix-vector products on the GPU was introduced. The Krylov
methods, nonlinear solvers, and integrators in PETSc run unchanged in parallel us-
ing these new subclasses. These can be used transparently from existing PETSc
application codes in C, C++, Fortran, or Python. The implementation is done with
the Thrust and Cusp C++ packages from NVIDIA.

1 Introduction

PETSc [3, 4] is a scalable solver library for the solution of algebraic equations aris-
ing from the discretization of partial differential equations and related problems. The
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goal of the project reported here was to allow PETSc solvers to utilize GPUs with as
little change as possible to the basic design of PETSc. Specifically, a new subclass
of the vector class has been introduced that performs its operation on NVIDIA GPU
processors. In addition, a new sparse matrix subclass that performs matrix-vector
products on the GPU was introduced. The Krylov methods, nonlinear solvers, and
integrators in PETSc run unchanged in parallel using these new subclasses. These
can be used transparently from existing PETSc application codes in C, C++, Fortran,
or Python. The implementation uses the Thrust1 [9] and Cusp2 [8] C++ packages
from NVIDIA.

Numerous groups have experimented with sparse matrix iterative solvers on
GPUs, for example, [10, 13, 11, 12, 7, 6, 5]. The Trilinos package [2, 15, 14] already
has support for NVIDIA GPUs through its Kokkos package, also using Thrust.

2 Sequential Implementation

PETSc consists of a small number of abstract classes: Vec and Mat devoted to data
and PC, KSP, SNES, and TS devoted to algorithms. By abstract, we mean that each
class is defined by a set of operations on the class object, while any data associated
with the class object is encapsulated within the object and not directly assessable
outside the class. The Vec class is used for representing field values, discrete solu-
tions to PDEs, right-hand sides of linear systems, and so forth. PETSc provides a
default implementation of the Vec class that stores the vector entries in a simple,
one-dimensional C/Fortran array and uses BLAS 1 operations when possible for the
methods and MPI to perform reduction operations across processes needed by inner
products and norms. The Mat and PC classes do not directly access the underlying
array in the vector; instead they call

VecGetArray(Vec, double *[])

or

VecGetArrayRead(Vec, const double *[])

to access the local (on process) values of the vector. In general, the KSP, SNES,
and TS classes never access Vec or Mat data; rather, they call methods on the Vec
and Mat objects in order to perform operations on the data. The PC class is some-
what special in that many preconditioners are data structure specific. Thus, many
PC implementations directly access matrix data structures, which in C++ would
correspond to a friend class.

For this initial implementation of PETSc on GPUs, we have used the follow-
ing model. PETSc runs in parallel with MPI for communication; and each PETSc

1 Thrust is a CUDA library of parallel algorithms with an interface resembling the C++ Standard
Template Library (STL). Thrust provides a flexible high-level interface for GPU programming that
greatly enhances developer productivity.
2 Cusp is a library for sparse linear algebra and graph computations on CUDA that uses Thrust.
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process has access to a single GPU, which has its own memory, generally several
gigabytes. We introduce a new Vec implementation, which we will call a CUDA
Vec. Each object of this new Vec class must potentially manage two copies of the
vector data: one in the CPU memory and one in the GPU memory. (We note that
on some integrated graphics systems the GPU actually uses the usual CPU memory
as its memory; we ignore this for our preliminary work.) In order to manage mem-
ory coherence, each CUDA Vec has a flag that indicates whether space in the GPU
memory has been allocated and whether the memory in the GPU, in the CPU, or in
both contains the most recent values. The possible flag values are given in Table 1.
The flag is the only change to the base Vec class in PETSc. This was added to the
base class rather than the derived GPU-specific Vec class because we want to be
able to check whether the memory copy is needed, without requiring the extra clock
cycles of accessing the derived class for each check.

Two routines are provided,

VecCUDACopyToGPU(), VecCUDACopyFromGPU(),

that copy vector data down to the GPU memory or up to the CPU memory
based on the flag. For example, the method VecGetArray() for the CUDA
Vec copies the values up from the GPU if the flag is PETSC CUDA GPU, and
sets the flag to PETSC CUDA CPU since the user is free to change the vector
values. The VecGetArrayRead() still performs the copy but sets the flag to
PETSC CUDA BOTH since the user cannot change the values in the array. For
all vector operations performed on the GPU, such as VecAXPY(), data will be
copied down from the CPU if the flag is PETSC CUDA CPU and will be both
allocated and copied if it is PETSC CUDA UNALLOCATED.

Table 1 Flags used to indicate the memory state of a PETSc CUDA Vec object.

PETSC CUDA UNALLOCATED Memory not allocated on the GPU
PETSC CUDA GPU Values on GPU are current
PETSC CUDA CPU Values on CPU are current
PETSC CUDA BOTH Values on both devices are current

Implementations of the basic vector operations is straightforward. For example,
the VecAXPY() code is given by the following.

ierr = VecCUDACopyToGPU(xin);CHKERRQ(ierr);
ierr = VecCUDACopyToGPU(yin);CHKERRQ(ierr);
try {

cusp::blas::axpy(*((Vec_CUDA*)xin->spptr)->GPUarray,

*((Vec_CUDA*)yin->spptr)->GPUarray,alpha);
yin->valid_GPU_array = PETSC_CUDA_GPU;
ierr = WaitForGPU();CHKERRCUDA(ierr);

} catch(char *ex) {
SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_LIB,
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"CUDA error: \%s", ex);
}

For more sophisticated Vec methods, such as VecMAXPY(), y = y + ∑i αixi, and
VecMDot(), αi = yT xi, the code is more complicated. We unroll loops in order to
reuse entries in the y vector. For example, we unroll the outer loop for four vectors.
The multiple inner product code, written by using Thrust calls, is given below.

for (j=j_rem; j<nv; j+=4) {
yy0 = yin[0]; yy1 = yin[1];
yy2 = yin[2]; yy3 = yin[3];
ierr = VecCUDACopyToGPU(yy0);CHKERRQ(ierr);
ierr = VecCUDACopyToGPU(yy1);CHKERRQ(ierr);
ierr = VecCUDACopyToGPU(yy2);CHKERRQ(ierr);
ierr = VecCUDACopyToGPU(yy3);CHKERRQ(ierr);
try {

result4 = thrust::transform_reduce(
thrust::make_zip_iterator(

thrust::make_tuple(
((Vec_CUDA *)xin->spptr)->GPUarray->begin(),
((Vec_CUDA *)yy0->spptr)->GPUarray->begin(),
((Vec_CUDA *)yy1->spptr)->GPUarray->begin(),
((Vec_CUDA *)yy2->spptr)->GPUarray->begin(),

((Vec_CUDA *)yy3->spptr)->GPUarray->begin())),
thrust::make_zip_iterator(

thrust::make_tuple(
((Vec_CUDA *)xin->spptr)->GPUarray->end(),
((Vec_CUDA *)yy0->spptr)->GPUarray->end(),
((Vec_CUDA *)yy1->spptr)->GPUarray->end(),
((Vec_CUDA *)yy2->spptr)->GPUarray->end(),

((Vec_CUDA *)yy3->spptr)->GPUarray->end())),
cudamult4<thrust::tuple<PetscScalar,PetscScalar,

PetscScalar,PetscScalar,PetscScalar>,
thrust::tuple<PetscScalar,PetscScalar,

PetscScalar,PetscScalar> >(),
thrust::make_tuple(zero,zero,zero,zero),

cudaadd4<thrust::tuple<PetscScalar,PetscScalar,
PetscScalar,PetscScalar> >());

z[0] = thrust::get<0>(result4);
z[1] = thrust::get<1>(result4);
z[2] = thrust::get<2>(result4);
z[3] = thrust::get<3>(result4);

} catch(char* ex) {
SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,

"CUDA error: %s", ex);
}
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z += 4;
yin += 4;

}

The CUDA kernel of this operation is given by the following.

struct VecCUDAMAXPY4 {
template <typename Tuple>
__host__ __device__
void operator()(Tuple t) {

/* y += a1*x1 +a2*x2 + a3*x3 +a4*x4 */
thrust::get<0>(t) +=

thrust::get<1>(t)*thrust::get<2>(t) +
thrust::get<3>(t)*thrust::get<4>(t) +
thrust::get<5>(t)*thrust::get<6>(t) +
thrust::get<7>(t)*thrust::get<8>(t);

}
};

Note that often the VecCUDACopyToGPU() calls simply verify that the vector’s
flag is PETSC CUDA GPU and do not need to copy the data down to the GPU.
This is the case during a Krylov solve, where only the results of norm and inner
product calls are shipped back to the CPU.

The NVIDIA Cusp software provides a data structure and matrix-vector product
operation for sparse matrices in Compressed Sparse Row (CSR) and several other
formats. Our initial CUDA Mat implementation simply uses the code provided by
Cusp. The matrix-vector product code in PETSc then is given by the following.

try {
cusp::multiply(*cudastruct->mat,

*((Vec_CUDA *)xx->spptr)->GPUarray,

*((Vec_CUDA *)yy->spptr)->GPUarray);
} catch(char* ex) {

SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,
"CUDA error: \%s", ex);

}

Our primary design goal in this initial implementation was to enable the vector and
matrix data to reside on the GPU throughout an entire Krylov solve, requiring no
slow copying of data between the two memories.This is now supported for all but
one of the Krylov methods in PETSc, including GMRES, Bi-CG-stab, and CG,
and several preconditioners including Jacobi and the Cusp Smoothed-Aggregation
Algebraic Multigrid. The excluded Krylov method, a variant of Bi-CG-stab that
requires only one global synchronization per iteration, actually accesses the vectors
directly rather than through the Vec class methods (since it requires many operations
not supported by the class methods) and hence would need to be rewritten directly
in CUDA.
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3 Parallel Implementation

In the parallel case, there must be communication of vector entries between pro-
cesses during the computation of the sparse matrix-vector product. In PETSc, for
the built-in parallel sparse matrix formats the parallel matrix is stored in two parts:
the “on-diagonal” portion of the matrix, Ad , with all the columns associated with
the rows of the vector “owned” by the given process, xd , and the “off-diagonal” por-
tion, Ao, associated with all the other columns (whose vector values are “owned”
by other processes, xo). The sparse matrix-vector product is computed in two steps:
yd = Adxd , then yd = yd +Aoxo. Of course, since Ao has few columns with nonzero
entries, most of xo do not need to be communicated to the given process.

PETSc manages all communication of vector entries between processes via the
VecScatter object. For the sparse matrix-vector product vector communication, this
object is created with a list of global indices indicating from where in the source
vector entries are to come from and another list of indices indicating where they
are to be stored into a local work vector. The vector communication itself is done
in two stages: first a VecScatterBegin() copies the vector entries that need to
be sent into message buffers, and posts nonblocking MPI receives and sends; then
VecScatterEnd() waits on the receives and copies the results from the message
buffers into the local work vector. If we let Âo denote the nonzero columns of Ao
and let x̂o denote the corresponding rows of xo, then the parallel matrix-vector code
is as follows.

VecScatterBegin(a->Mvctx, xd, hatxo,
INSERT_VALUES, SCATTER_FORWARD);

MatMult(Ad, xd, yd);
VecScatterEnd(a->Mvctx, xd, hatxo,

INSERT_VALUES, SCATTER_FORWARD);
MatMultAdd(hatAo, hatxo, yd, yd);

This same code can be used automatically when the Ad and Âo matrices are CUDA
matrices. The difference from the standard case is that the VecScatterBegin()
triggers a VecCUDACopyFromGPU() of the xd vector (so that its entries are
available in the CPU memory to be packed into the message buffers) and the
MatMultAdd() triggers a VecCUDACopyToGPU() of the vector x̂o (to move
the values that have arrived from other processes down to the GPU memory). Initial
profiling indicated that the needed VecCUDACopyFromGPU() was taking sub-
stantial time. But most entries of the xd vector are not actually needed by the vector
scatter routines, only those values that are destined for other processes that will gen-
erally be only a few percent of the values. Thus we have added the following routine,
which copies only the needed values.

VecCUDACopyFromGPUSome(Vec,
cusp::array1d<PetscInt,cusp::host_memory> *iCPU,
cusp::array1d<PetscInt,cusp::device_memory> *iGPU)
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There are two sets of identical indices, one that resides in the CPU memory and
one that lives on the GPU memory, since it would be inefficient to copy the indices
between the two memories on each invocation. The constructor for the VecScatter
determines the required indices and sets them in the two memories. With the addi-
tion of this new code the required copy time decreased significantly in the parallel
matrix-vector product. This change required a small amount of additional GPU-
specific code in the VecScatter constructor and VecScatterBegin().

To monitor the movement of data between the two memories, we provided two
additional PetscEvents, one that tracks the counts and times of copies from the
GPU and one for copies to the GPU. This information can be accessed with the
usual PETSc -log summary option. Because CUDA calls are, by default, asyn-
chronous, meaning the function calls in the CPU return before the GPU completes
the operation, we provide a global flag that forces a wait after each CUDA call until
the operation is complete. This is neccessary whenever one wants accurate times of
the individual phases of the computation. Forcing synchronization appears to cost a
few percent of the runtime; in production runs this option is not needed.

4 Conclusion and Future Work

We can now run parallel linear solves (with very simple preconditioners) that utilize
the GPU for all vector and the matrix-vector product operation. The only vector
entries that need to be passed, during the linear solve, between GPU memory and
CPU memory are those destined for other processes.

This is preliminary work. Important additional work is needed in several areas.

• Performance evaluation and optimization. We have verified correctness and basic
performance of the new code that utilizes the GPUs, but we have not yet done
comprehensive studies.

• Matrices with structure. Many applications result in sparse matrices with particu-
lar structure, for example, adjacent rows with the same nonzero structure (called
i-nodes in PETSc) or made up of small (say, three by three) blocks (here PETSc
offers the BAIJ storage format). PETSc has special code that takes advantage of
this structure to deliver higher performance. Another format that may be appro-
priate for GPUs is storage by diagonals. We need to investigate whether any of
this structure be utilized on the GPU also to obtain higher performance?

• GPU-based preconditioners. The NVIDIA group is actively developing several
of these, and they are easily added as new preconditioners in PETSc by simply
deriving new PC subclasses that utilize the NVIDIA code.

• GPU-based nonlinear function evaluations. We have a simple, one-dimensional
finite difference problem on a structured grid

$PETSC_DIR/src/snes/examples/tutorials/ex47cu.cu

that uses the Thrust zip iterator to apply a stencil operation. As with the parallel
matrix-vector product, the VecScatter class is used to manage the communica-
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tion of ghost point values between processes. More work is needed so that copies
of vectors between unghosted and ghosted representations require as few mem-
ory copies as possible between GPU and CPU. Various groups are in the process
of developing or have already developed implementations of finite-element func-
tion evaluations for GPUs [18, 23, 19, 20, 21, 17, 1, 16]. These could be used
within a PETSc code.

• GPU-based Jacobian evaluations. With GPU-based Jacobian evaluations the en-
tire nonlinear solution process (and hence also ODE integration) could be per-
formed on GPUs without requiring any vector or matrix copies between CPU and
GPU memory besides those entries required to move data between processes.
This is a difficult task because the sparse matrix data structure is nontrivial and
hence the efficient application of the equivalent of MatSetValues() on the
GPU is nontrivial.

We note that because of the object-oriented design of PETSc it is possible to
introduce additional vector and matrix classes ... distinctly different from those dis-
cussed in this paper, that also use the NVIDIA GPUs. In fact, we hope there will
be additional implementations to determine those that produce the highest perfor-
mance.

When considering sparse matrix iterative solvers on GPUs, one must bear in
mind that these algorithms are almost always memory-bandwidth limited. That is,
the speed of the implementation does not depend strongly on the speed or number of
the processor cores but rather on the speed of the memory. Since the best GPU sys-
tems have higher memory bandwidth than do conventional processors, one expects
(and actually does see) higher floating-point rates with GPU systems; but since the
memory bandwidths of GPU systems are only several times faster than those of con-
ventional processors, a sparse matrix iterative solver converted from CPUs to GPUs
will be at most only several times faster. Speedups of 100 or more are simply not
possible. Additional perspectives on this issue are available in [22].
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